Spinal cord injury-induced gut dysbiosis influences neurological recovery partly through short-chain fatty acids

Author:

Jing Yingli,Yang Degang,Bai Fan,Wang Qiuying,Zhang Chao,Yan YitongORCID,Li Zihan,Li Yan,Chen ZhiguoORCID,Li Jianjun,Yu Yan

Abstract

AbstractSpinal cord injury (SCI) can reshape gut microbial composition, significantly affecting clinical outcomes in SCI patients. However, mechanisms regarding gut–brain interactions and their clinical implications have not been elucidated. We hypothesized that short-chain fatty acids (SCFAs), intestinal microbial bioactive metabolites, may significantly affect the gut–brain axis and enhance functional recovery in a mouse model of SCI. We enrolled 59 SCI patients and 27 healthy control subjects and collected samples. Thereafter, gut microbiota and SCFAs were analyzed using 16 S rDNA sequencing and gas chromatography–mass spectrometry, respectively. We observed an increase in Actinobacteriota abundance and a decrease in Firmicutes abundance. Particularly, the SCFA-producing genera, such as Faecalibacterium, Megamonas, and Agathobacter were significantly downregulated among SCI patients compared to healthy controls. Moreover, SCI induced downregulation of acetic acid (AA), propionic acid (PA), and butyric acid (BA) in the SCI group. Fecal SCFA contents were altered in SCI patients with different injury course and injury segments. Main SCFAs (AA, BA, and PA) were administered in combination to treat SCI mice. SCFA supplementation significantly improved locomotor recovery in SCI mice, enhanced neuronal survival, promoted axonal formation, reduced astrogliosis, and suppressed microglial activation. Furthermore, SCFA supplementation downregulated NF-κB signaling while upregulating neurotrophin-3 expression following SCI. Microbial sequencing and metabolomics analysis showed that SCI patients exhibited a lower level of certain SCFAs and related bacterial strains than healthy controls. SCFA supplementation can reduce inflammation and enhance nourishing elements, facilitating the restoration of neurological tissues and the improvement of functional recuperation. Trial registration: This study was registered in the China Clinical Trial Registry (www.chictr.org.cn) on February 13, 2017 (ChiCTR-RPC-17010621).

Publisher

Springer Science and Business Media LLC

Subject

Applied Microbiology and Biotechnology,Microbiology,Biotechnology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3