Open-source interactive design platform for 3D-printed microfluidic devices

Author:

Zhang YushenORCID,Li Mengchu,Tseng Tsun-MingORCID,Schlichtmann Ulf

Abstract

AbstractMicrofluidics and 3D printing offer exciting opportunities for the development of new technologies and applications in the fields of biology, chemistry, and medicine. However, the design of 3D-printed microfluidic devices remains a challenging and complex task, requiring specialized knowledge and expertise in fluid mechanics, 3D modeling, and 3D printing technology. Currently, there are very few tools helping engineers to do the labor-intensive process of designing microfluidic devices, let alone any tools that can help them design microfluidic devices for 3D printing. In this work, we introduce Flui3d, an interactive software platform for designing microfluidic devices for 3D printing. Flui3d offers a standard parameterized component library, support for multi-layer design, and the ability to design and configure microfluidic devices without the need for specialized knowledge. Flui3d incorporates a distinctive Design-for-Manufacturing (DFM) function, facilitating seamless fabrication of the designed microfluidic devices using commercial consumer-grade printers. We discuss the key features and benefits of Flui3d and demonstrate them by designing examples of microfluidic devices. We also discuss the design complexity and the potential applications of Flui3d.

Funder

Deutsche Forschungsgemeinschaft

Publisher

Springer Science and Business Media LLC

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3