Semaphorin 7A promotes endothelial to mesenchymal transition through ATF3 mediated TGF-β2/Smad signaling

Author:

Hong Lei,Li Fengchan,Tang Chaojun,Li Ling,Sun Lili,Li Xiaoqiang,Zhu Li

Abstract

AbstractEndothelial to mesenchymal transition (EndMT) is an important pathological change in many diseases. Semaphorin7A (Sema7A) has been reported to regulate nerve and vessel homeostasis, but its role in EndMT remains unclear. Here we investigate the effect of Sema7A on EndMT and the underlying mechanism. Sema7A-overexpressed human umbilical vein endothelial cells (Sema7A-HUVECs) were generated and showed lower levels of endothelial cell markers and higher levels of mesenchymal cell markers indicating the occurrence of EndMT. RNA-sequencing analysis showed a total of 1168 upregulated genes and 886 downregulated genes. Among them, most of the molecules associated with EndMT were upregulated in Sema7A-HUVECs. Mechanistically, Sema7A-HUVECs showed a higher TGF-β2 expression and activated TGF-β/Smad Signaling. Importantly, Sema7A overexpression upregulated activating transcription factor 3 (ATF3) that was found to selectively bind the promotor region of TGF-β2, but not TGF-β1, promoting TGF-β2 transcription, which was further confirmed by ATF3-siRNA knockdown approach. Blocking β1 integrin, a known Sema7A receptor, alleviated the expression of ATF3, TGF-β2, and EndMT in Sema7A-overexpressed HUVECs, implying a role of β1 integrin/ATF3/TGF-β2 axis in mediating Sema7A-induced EndMT. Using Sema7A-deficient mice and the partial carotid artery ligation (PCL) model, we showed that Sema7A deletion attenuated EndMT induced by blood flow disturbance in vivo. In conclusion, Sema7A promotes TGF-β2 secretion by upregulating transcription factor ATF3 in a β1 integrin-dependent manner, and thus facilitates EndMT through TGF/Smad signaling, implying Sema7A as a potential therapeutic target for EndMT-related vascular diseases.

Funder

National Natural Science Foundation of China

Publisher

Springer Science and Business Media LLC

Subject

Cancer Research,Cell Biology,Cellular and Molecular Neuroscience,Immunology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3