Gata2-L359V impairs primitive and definitive hematopoiesis and blocks cell differentiation in murine chronic myelogenous leukemia model

Author:

Fu Ya-Kai,Tan YunORCID,Wu Bo,Dai Yu-Ting,Xu Xiao-Guang,Pan Meng-Meng,Chen Zhi-Wei,Qiao Niu,Wu Jing,Jiang Lu,Lu Jing,Chen Bing,Rein Avigail,Izraeli ShaiORCID,Sun Xiao-JianORCID,Huang Jin-Yan,Huang Qiu-HuaORCID,Chen Zhu,Chen Sai-JuanORCID

Abstract

AbstractGATA2, a key transcription factor in hematopoiesis, is frequently mutated in hematopoietic malignancies. How the GATA2 mutants contribute to hematopoiesis and malignant transformation remains largely unexplored. Here, we report that Gata2-L359V mutation impeded hematopoietic differentiation in murine embryonic and adult hematopoiesis and blocked murine chronic myeloid leukemia (CML) cell differentiation. We established a Gata2-L359V knockin mouse model in which the homozygous Gata2-L359V mutation caused major defects in primitive erythropoiesis with an accumulation of erythroid precursors and severe anemia, leading to embryonic lethality around E11.5. During adult life, the Gata2-L359V heterozygous mice exhibited a notable decrease in bone marrow (BM) recovery under stress induction with cytotoxic drug 5-fluorouracil. Using RNA sequencing, it was revealed that homozygous Gata2-L359V suppressed genes related to embryonic hematopoiesis in yolk sac, while heterozygous Gata2-L359V dysregulated genes related to cell cycle and proliferation in BM Lin-Sca1+c-kit+ cells. Furthermore, through chromatin immunoprecipitation sequencing and transactivation experiments, we found that this mutation enhanced the DNA-binding capacity and transcriptional activities of Gata2, which was likely associated with the altered expression of some essential genes during embryonic and adult hematopoiesis. In mice model harboring BCR/ABL, single-cell RNA-sequencing demonstrated that Gata2-L359V induced additional gene expression profile abnormalities and partially affected cell differentiation at the early stage of myelomonocytic lineage, evidenced by the increase of granulocyte–monocyte progenitors and monocytosis. Taken together, our study unveiled that Gata2-L359V mutation induces defective hematopoietic development and blocks the differentiation of CML cells.

Publisher

Springer Science and Business Media LLC

Subject

Cancer Research,Cell Biology,Cellular and Molecular Neuroscience,Immunology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3