Sodium butyrate inhibits high cholesterol-induced neuronal amyloidogenesis by modulating NRF2 stabilization-mediated ROS levels: involvement of NOX2 and SOD1

Author:

Kim Seo Yihl,Chae Chang Woo,Lee Hyun Jik,Jung Young Hyun,Choi Gee Euhn,Kim Jun SungORCID,Lim Jae Ryong,Lee Joo Eun,Cho Ji Hyeon,Park Hansoo,Park Changho,Han Ho Jae

Abstract

AbstractThe gut–brain axis is currently being studied as a therapeutic strategy for neurological diseases, especially Alzheimer’s disease (AD). Obesity results in the gut microbiota dysbiosis, which includes butyrate-producing bacteria are reduced. Although sodium butyrate (NaB) has emerged as the potential therapeutic substance in AD, there is a lack of detailed results into what signaling pathways affect amyloidogenesis in AD induced by obesity. Thus, we investigated the regulatory role of NaB on amyloidogenesis in neuronal cells under high cholesterol. In our results, we verified that increased amyloid β peptide (Aβ) accumulation in the brain of obese mice and a reduction in butyrate-producing bacteria due to the gut microbiota dysbiosis induced by obesity. We showed that NaB decreased the expression levels of beta-site amyloid precursor protein cleaving enzyme 1 (BACE1) and Aβ accumulation induced by high cholesterol in SK-N-MC cells. We demonstrated that NaB was absorbed in cells through sodium-coupled monocarboxylate transporter 1 (SMCT1) and then inhibited high cholesterol-induced Aβ accumulation. Subsequently, we also observed that reactive oxygen species (ROS) were overproduced because of increased NADPH oxidase 2 (NOX2) expression under high cholesterol. Meanwhile, NaB decreased NOX2 levels through a reduction of NF-κB activity, which ultimately inhibited Aβ accumulation caused by high cholesterol. We demonstrated that NaB increased the expression levels of p21 under high cholesterol, contributing to p21/NRF2 (Nuclear factor erythroid 2-related factor 2) colocalization, which leads to NRF2 stabilization. NRF2 stabilization causes NF-κB inactivation, followed by NOX2 suppression and superoxide dismutase 1 (SOD1) upregulation. Thus, NaB with SOD1 silencing under high cholesterol did not eliminate excessive ROS, and eventually resulted in Aβ accumulation. In conclusion, we demonstrated that NaB prevents excessive ROS through NOX2 suppression and SOD1 upregulation by p21/NRF2 pathway, which is critical for inhibiting BACE1-dependent amyloidogenesis in neuronal cells exposed to high cholesterol environment.

Publisher

Springer Science and Business Media LLC

Subject

Cancer Research,Cell Biology,Cellular and Molecular Neuroscience,Immunology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3