Abstract
AbstractFragile X syndrome (FXS) is a neurodevelopmental disorder, characterized by intellectual disability and sensory deficits, caused by epigenetic silencing of the FMR1 gene and subsequent loss of its protein product, fragile X mental retardation protein (FMRP). Delays in synaptic and neuronal development in the cortex have been reported in FXS mouse models; however, the main goal of translating lab research into pharmacological treatments in clinical trials has been so far largely unsuccessful, leaving FXS a still incurable disease. Here, we generated 2D and 3D in vitro human FXS model systems based on isogenic FMR1 knock-out mutant and wild-type human induced pluripotent stem cell (hiPSC) lines. Phenotypical and functional characterization of cortical neurons derived from FMRP-deficient hiPSCs display altered gene expression and impaired differentiation when compared with the healthy counterpart. FXS cortical cultures show an increased number of GFAP positive cells, likely astrocytes, increased spontaneous network activity, and depolarizing GABAergic transmission. Cortical brain organoid models show an increased number of glial cells, and bigger organoid size. Our findings demonstrate that FMRP is required to correctly support neuronal and glial cell proliferation, and to set the correct excitation/inhibition ratio in human brain development.
Publisher
Springer Science and Business Media LLC
Subject
Cancer Research,Cell Biology,Cellular and Molecular Neuroscience,Immunology
Cited by
44 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献