Abstract
AbstractAccumulating evidences indicate that circular RNAs (circRNAs), a subclass of noncoding RNAs, play important role in regulating gene expression in eukaryotes. Hsa_circ_0046263 (circ-0046263) was found aberrantly expressed in nasopharyngeal carcinoma (NPC), but its role in tumor growth and metastasis remains largely unclear. Sanger sequencing, RNase R assay, and nucleic acid electrophoresis were conducted to verify the identification of circ-0046263. Nuclear separation and fluorescence in situ hybridization (FISH) assays were used to determine the localization of circ-004263. Dual luciferase reporter and RNA immunoprecipitation (RIP) were employed to confirm the binding of circ-0046263 with miR-133a-5p. Colony formation, proliferation, wound healing, transwell, western blot, and in vivo tumor growth and metastasis assays were performed to assess the roles of circ-0046263, miR-133a-5p, IGFBP3 and their interactions in NPC cells. Circ-0046263 was upregulated in both NPC cell lines and tissues. The in vitro functional studies revealed that knockdown of circ-0046263 inhibited the proliferation, invasion, and migration of NPC cells, whereas its overexpression produced the opposite result. In vivo experiments indicated that knockdown or overexpression of circ-0046263 attenuated or promoted tumor growth and metastasis, respectively. Mechanistically, circ-0046263 could act as a miRNA sponge to absorb miR-133a-5p and upregulate the expression of miRNA downstream target IGFBP3. In addition, miR-133a-5p inhibition or IGFBP3 overexpression could rescue the malignant behavior induced by circ-0046263 silencing. Finally, circ-0046263 plays a tumor-promoting role in NPC to enhance malignant behavior through the miR-133a-5p/IGFBP3 axis, which could be a potential target for NPC therapy.
Funder
National Natural Science Foundation of China
China Postdoctoral Science Foundation
Medical Young Talent Foundation of Jiangsu Provincial Health Department
Publisher
Springer Science and Business Media LLC
Subject
Cancer Research,Cell Biology,Cellular and Molecular Neuroscience,Immunology
Cited by
41 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献