Abstract
AbstractCytochrome P450 drug-metabolizing enzymes may contribute to interindividual differences in antidepressant outcomes. We investigated the effects of CYP2C19 and CYP2D6 gene variants on response, tolerability, and serum concentrations. Patients (N = 178) were treated with escitalopram (ESC) from weeks 0–8 (Phase I), and at week 8, either continued ESC if they were responders or were augmented with aripiprazole (ARI) if they were non-responders (<50% reduction in Montgomery–Åsberg Depression Rating Scale from baseline) for weeks 8–16 (Phase II). Our results showed that amongst patients on ESC-Only, CYP2C19 intermediate and poor metabolizers (IM + PMs), with reduced or null enzyme function, trended towards significantly lower symptom improvement during Phase II compared to normal metabolizers (NMs), which was not observed in ESC + ARI. We further showed that CYP2D6 NMs and IM + PMs had a higher likelihood of reporting a treatment-related central nervous system side effect in ESC-Only and ESC + ARI, respectively. The differences in the findings between ESC-Only and ESC + ARI may be due to the altered pharmacokinetics of ESC by ARI coadministration in ESC + ARI. We provided evidence for this postulation when we showed that in ESC-Only, CYP2C19 and CYP2D6 IM + PMs demonstrated significantly higher ESC concentrations at Weeks 10 and 16 compared to NMs. In contrast, ESC + ARI showed an association with CYP2C19 but not with CYP2D6 metabolizer group. Instead, ESC + ARI showed an association between CYP2D6 metabolizer group and ARI metabolite-to-drug ratio suggesting potential competition between ESC and ARI for CYP2D6. Our findings suggest that dosing based on CYP2C19 and CYP2D6 genotyping could improve safety and outcome in patients on ESC monotherapy.
Funder
Gouvernement du Canada | Canadian Institutes of Health Research
Lundbeckfonden
Servier
Publisher
Springer Science and Business Media LLC
Subject
Biological Psychiatry,Cellular and Molecular Neuroscience,Psychiatry and Mental health
Reference44 articles.
1. van der Weide J, Hinrichs JW. The influence of cytochrome P450 pharmacogenetics on disposition of common antidepressant and antipsychotic medications. Clin Biochem Rev. 2006;27:17–25.
2. Kirchheiner J, Nickchen K, Bauer M, Wong M-L, Licinio J, Roots I, et al. Pharmacogenetics of antidepressants and antipsychotics: the contribution of allelic variations to the phenotype of drug response. Mol Psychiatry. 2004;9:442–73.
3. Walden LM, Brandl EJ, Tiwari AK, Cheema S, Freeman N, Braganza N, et al. Genetic testing for CYP2D6 and CYP2C19 suggests improved outcome for antidepressant and antipsychotic medication. Psychiatry Res 2018 https://doi.org/10.1016/j.psychres.2018.02.055.
4. Cipriani A, Furukawa TA, Salanti G, Chaimani A, Atkinson LZ, Ogawa Y, et al. Comparative efficacy and acceptability of 21 antidepressant drugs for the acute treatment of adults with major depressive disorder: a systematic review and network meta-analysis. Lancet. 2018;391:1357–66.
5. Kennedy SH, Andersen HF, Lam RW. Efficacy of escitalopram in the treatment of major depressive disorder compared with conventional selective serotonin reuptake inhibitors and venlafaxine XR: a meta-analysis. J Psychiatry Neurosci. 2006;31:122–31.
Cited by
16 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献