Generalizable prediction of childhood ADHD symptoms from neurocognitive testing and youth characteristics

Author:

Weigard AlexanderORCID,McCurry Katherine L.ORCID,Shapiro Zvi,Martz Meghan E.,Angstadt Mike,Heitzeg Mary M.,Dinov Ivo D.ORCID,Sripada ChandraORCID

Abstract

AbstractChildhood attention-deficit/hyperactivity disorder (ADHD) symptoms are believed to result from disrupted neurocognitive development. However, evidence for the clinical and predictive value of neurocognitive assessments in this context has been mixed, and there have been no large-scale efforts to quantify their potential for use in generalizable models that predict individuals’ ADHD symptoms in new data. Using data drawn from the Adolescent Brain Cognitive Development Study (ABCD), a consortium that recruited a diverse sample of over 10,000 youth (ages 9–10 at baseline) across 21 U.S. sites, we develop and test cross-validated machine learning models for predicting youths’ ADHD symptoms using neurocognitive abilities, demographics, and child and family characteristics. Models used baseline demographic and biometric measures, geocoded neighborhood data, youth reports of child and family characteristics, and neurocognitive tests to predict parent- and teacher-reported ADHD symptoms at the 1-year and 2-year follow-up time points. Predictive models explained 15–20% of the variance in 1-year ADHD symptoms for ABCD Study sites that were left out of the model-fitting process and 12–13% of the variance in 2-year ADHD symptoms. Models displayed high generalizability across study sites and trivial loss of predictive power when transferred from training data to left-out data. Features from multiple domains contributed meaningfully to prediction, including neurocognition, sex, self-reported impulsivity, parental monitoring, and screen time. This work quantifies the information value of neurocognitive abilities and other child characteristics for predicting ADHD symptoms and provides a foundational method for predicting individual youths’ symptoms in new data across contexts.

Funder

U.S. Department of Health & Human Services | NIH | National Institute on Drug Abuse

U.S. Department of Health & Human Services | NIH | National Institute on Alcohol Abuse and Alcoholism

U.S. Department of Health & Human Services | NIH | National Institute of Mental Health

U.S. Department of Health & Human Services | NIH | National Institute of General Medical Sciences

Publisher

Springer Science and Business Media LLC

Subject

Biological Psychiatry,Cellular and Molecular Neuroscience,Psychiatry and Mental health

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3