A systematic review on the application of machine learning models in psychometric questionnaires for the diagnosis of attention deficit hyperactivity disorder

Author:

Caselles‐Pina Lucía12,Quesada‐López Alejandro13,Sújar Aaron3ORCID,Hernández Eva María Garzón1,Delgado‐Gómez David1

Affiliation:

1. Department of Statistics Universidad Carlos III de Madrid Getafe Spain

2. Faculty of Psychology Universidad Autónoma de Madrid Madrid Spain

3. Departamento de Informática y Estadística Universidad Rey Juan Carlos Móstoles Spain

Abstract

AbstractAttention deficit hyperactivity disorder is one of the most prevalent neurodevelopmental disorders worldwide. Recent studies show that machine learning has great potential for the diagnosis of attention deficit hyperactivity disorder. The aim of the present article is to systematically review the scientific literature on machine learning studies for the diagnosis of attention deficit hyperactivity disorder, focusing on psychometric questionnaire tools. The Preferred Reporting Items for Systematic reviews and Meta‐Analyses (PRISMA) guidelines were adopted. The review protocol was registered in the PROSPERO database. A search was conducted in three databases—Web of Science Core Collection, Scopus and Pubmed—with the aim of identifying studies that apply ML techniques to support the diagnosis of attention deficit hyperactivity disorder. A total of 17 empirical studies were found that met the established inclusion criteria. The results showed that machine learning can be used to increase the accuracy of attention deficit hyperactivity disorder diagnosis. Machine learning techniques are useful and effective strategies that can complement traditional diagnostics in patients with attention deficit hyperactivity disorder.

Funder

Instituto de Salud Carlos III

Universidad Carlos III de Madrid

Consejería de Educación e Investigación

Publisher

Wiley

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3