Abstract
AbstractIn the last decades, antibodies have emerged as one of the most important and successful classes of biopharmaceuticals. The highest variability and diversity of an antibody is concentrated on six hypervariable loops, also known as complementarity determining regions (CDRs) shaping the antigen-binding site, the paratope. Whereas it was assumed that certain sequences can only adopt a limited set of backbone conformations, in this study we present a kinetic classification of several paratope states in solution. Using molecular dynamics simulations in combination with experimental structural information we capture the involved conformational transitions between different canonical clusters and additional dominant solution structures occurring in the micro-to-millisecond timescale. Furthermore, we observe a strong correlation of CDR loop movements. Another important aspect when characterizing different paratope states is the relative VH/VL orientation and the influence of the distinct CDR loop states on the VH/VL interface. Conformational rearrangements of the CDR loops do not only have an effect on the relative VH/VL orientations, but also influence in some cases the elbow-angle dynamics and shift the respective distributions. Thus, our results show that antibodies exist as several interconverting paratope states, each contributing to the antibody’s properties.
Publisher
Springer Science and Business Media LLC
Subject
General Agricultural and Biological Sciences,General Biochemistry, Genetics and Molecular Biology,Medicine (miscellaneous)
Cited by
41 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献