Abstract
AbstractObservational studies suggest smoking, cannabis use, alcohol consumption, and substance use disorders (SUDs) may impact risk for respiratory infections, including coronavirus 2019 (COVID-2019). However, causal inference is challenging due to comorbid substance use. Using summary-level European ancestry data (>1.7 million participants), we performed single-variable and multivariable Mendelian randomization (MR) to evaluate relationships between substance use behaviors, COVID-19 and other respiratory infections. Genetic liability for smoking demonstrated the strongest associations with COVID-19 infection risk, including the risk for very severe respiratory confirmed COVID-19 (odds ratio (OR) = 2.69, 95% CI, 1.42, 5.10, P-value = 0.002), and COVID-19 infections requiring hospitalization (OR = 3.49, 95% CI, 2.23, 5.44, P-value = 3.74 × 10−8); these associations generally remained robust in models accounting for other substance use and cardiometabolic risk factors. Smoking was also strongly associated with increased risk of other respiratory infections, including asthma-related pneumonia/sepsis (OR = 3.64, 95% CI, 2.16, 6.11, P-value = 1.07 × 10−6), chronic lower respiratory diseases (OR = 2.29, 95% CI, 1.80, 2.91, P-value = 1.69 × 10−11), and bacterial pneumonia (OR = 2.14, 95% CI, 1.42, 3.24, P-value = 2.84 × 10−4). We provide strong genetic evidence showing smoking increases the risk for COVID-19 and other respiratory infections even after accounting for other substance use behaviors and cardiometabolic diseases, which suggests that prevention programs aimed at reducing smoking may be important for the COVID-19 pandemic and have substantial public health benefits.
Publisher
Springer Science and Business Media LLC
Subject
General Agricultural and Biological Sciences,General Biochemistry, Genetics and Molecular Biology,Medicine (miscellaneous)
Reference91 articles.
1. Puntmann, V. O. et al. Outcomes of cardiovascular magnetic resonance imaging in patients recently recovered from coronavirus disease 2019 (COVID-19). JAMA Cardiol. 5, 1265–1273 (2020).
2. Shi, S. et al. Association of cardiac injury with mortality in hospitalized patients with COVID-19 in Wuhan, China. JAMA Cardiol. 5, 802–810 (2020).
3. Nishiga, M., Wang, D. W., Han, Y., Lewis, D. B. & Wu, J. C. COVID-19 and cardiovascular disease: from basic mechanisms to clinical perspectives. Nat. Rev. Cardiol. 17, 543–558 (2020).
4. Troeger, C. et al. Estimates of the global, regional, and national morbidity, mortality, and aetiologies of lower respiratory infections in 195 countries, 1990–2016: a systematic analysis for the Global Burden of Disease Study 2016. Lancet Infect. Dis. 18, 1191–1210 (2018).
5. Soriano, J. B. et al. Global, regional, and national deaths, prevalence, disability-adjusted life years, and years lived with disability for chronic obstructive pulmonary disease and asthma, 1990–2015: a systematic analysis for the Global Burden of Disease Study 2015. The Lancet. Respiratory Med. 5, 691–706 (2017).