Circular RNA RSU1 promotes retinal vascular dysfunction by regulating miR-345-3p/TAZ

Author:

Zhang Yiting,Hu Jianping,Qu Xiaoying,Hu KeORCID

Abstract

AbstractDiabetic mellitus-induced diabetic retinopathy is a significant cause of visual impairment and blindness in adults. Circular RNAs (circRNAs) have been shown to play initial roles in vascular progression. However, the mechanism underlying diabetes mellitus-induced vascular complications remains largely unknown. In circRNA chip experiments, circRSU1 was found to be generally overexpressed in diabetic retinopathy patients. Human retina endothelial cells were stably transfected with lentiviruses carrying a circRSU1 interference plasmid. CircRSU1 downregulation alleviated diabetes mellitus induced retina vascular dysfunction, resulting in decreased vascular endothelial growth factor levels, inflammatory responses and oxidative stress. Mechanistically, we showed that elevated circRSU1 expression upregulated the TAZ levels by sponging miR-345-3p. Downregulation of TAZ reversed the vascular dysfunction that was caused by increased circRSU1 expression under hyperglycaemic conditions. In conclusion, overexpression of circRSU1 promotes vascular dysfunction by sponging miR-345-3p to increase the TAZ levels under diabetic conditions. We provide evidence that circRSU1 is a potential therapeutic target for treating diabetes mellitus-induced vascular dysfunction.

Funder

National Natural Science Foundation of China

Publisher

Springer Science and Business Media LLC

Subject

General Agricultural and Biological Sciences,General Biochemistry, Genetics and Molecular Biology,Medicine (miscellaneous)

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. The Hippo signalling pathway and its impact on eye diseases;Journal of Cellular and Molecular Medicine;2024-04

2. Circular RNAs: Regulators of endothelial cell dysfunction in atherosclerosis;Journal of Molecular Medicine;2024-01-24

3. RNA therapeutics for treatment of diabetes;Progress in Molecular Biology and Translational Science;2024

4. CircRSU1 alleviates LPS-induced human pulmonary microvascular endothelial cell injury by targeting miR-1224-5p/ITGA5 axis;General physiology and biophysics;2024

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3