Navoximod modulates local HSV-1 replication to reshape tumor immune microenvironment for enhanced immunotherapy via an injectable hydrogel

Author:

Zhuang Qiuyu,Zhao Binyu,Lin Zhiwen,Liang Yuzhi,Zhao Qingfu,Wang Yunhao,Liao Naishun,Tu Haibin,Zheng Youshi,Chen Hengkai,Zeng Yongyi,Zhang DaORCID,Liu XiaolongORCID

Abstract

AbstractOncolytic virotherapy can lead to tumor lysis and systemic anti-tumor immunity, but the therapeutic potential in humans is limited due to the impaired virus replication and the insufficient ability to overcome the immunosuppressive tumor microenvironment (TME). To solve the above problems, we identified that Indoleamine 2, 3-dioxygenase 1 (IDO1) inhibitor Navoximod promoted herpes simplex virus type 1 (HSV-1) replication and HSV-1-mediated oncolysis in tumor cells, making it a promising combination modality with HSV-1-based virotherapy. Thus, we loaded HSV-1 and Navoximod together in an injectable and biocompatible hydrogel (V-Navo@gel) for hepatocellular carcinoma (HCC) virotherapy. The hydrogel formed a local delivery reservoir to maximize the viral replication and distribution at the tumor site with a single-dose injection. Notably, V-Navo@gel improved the disease-free survival time of HCC- bearing mice and protects the mice against tumor recurrence. What’s more, V-Navo@gel also showed an effective therapeutic efficacy in the rabbit orthotopic liver cancer model. Mechanistically, we further discovered that our combination strategy entirely reprogramed the TME through single-cell RNA sequencing. All these results collectively indicated that the combination of Navoximod with HSV-1 could boost the viral replication and reshape TME for tumor eradication through the hydrogel reservoir.

Funder

National Natural Science Foundation of China

Natural Science Foundation of Fujian Province

The Scientific Foundation of Fuzhou Municipal Health commission

Publisher

Springer Science and Business Media LLC

Subject

General Agricultural and Biological Sciences,General Biochemistry, Genetics and Molecular Biology,Medicine (miscellaneous)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3