A miniature dialysis-culture device allows high-density human-induced pluripotent stem cells expansion from growth factor accumulation

Author:

Torizal Fuad GandhiORCID,Lau Qiao YouORCID,Ibuki Masato,Kawai Yoshikazu,Horikawa Masato,Minami Masataka,Michiue TatsuoORCID,Horiguchi Ikki,Nishikawa Masaki,Sakai Yasuyuki

Abstract

AbstractThree-dimensional aggregate-suspension culture is a potential biomanufacturing method to produce a large number of human induced pluripotent stem cells (hiPSCs); however, the use of expensive growth factors and method-induced mechanical stress potentially result in inefficient production costs and difficulties in preserving pluripotency, respectively. Here, we developed a simple, miniaturized, dual-compartment dialysis-culture device based on a conventional membrane-culture insert with deep well plates. The device improved cell expansion up to approximately ~3.2 to 4×107 cells/mL. The high-density expansion was supported by reduction of excessive shear stress and agglomeration mediated by the addition of the functional polymer FP003. The results revealed accumulation of several growth factors, including fibroblast growth factor 2 and insulin, along with endogenous Nodal, which acts as a substitute for depleted transforming growth factor-β1 in maintaining pluripotency. Because we used the same growth-factor formulation per volume in the upper culture compartment, the cost reduced in inverse proportional manner with the cell density. We showed that growth-factor-accumulation dynamics in a low-shear-stress environment successfully improved hiPSC proliferation, pluripotency, and differentiation potential. This miniaturised dialysis-culture system demonstrated the feasibility of cost-effective mass production of hiPSCs in high-density culture.

Publisher

Springer Science and Business Media LLC

Subject

General Agricultural and Biological Sciences,General Biochemistry, Genetics and Molecular Biology,Medicine (miscellaneous)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3