Abstract
AbstractThe neurobiological basis of learning is reflected in adaptations of brain structure, network organization and energy metabolism. However, it is still unknown how different neuroplastic mechanisms act together and if cognitive advancements relate to general or task-specific changes. Therefore, we tested how hierarchical network interactions contribute to improvements in the performance of a visuo-spatial processing task by employing simultaneous PET/MR neuroimaging before and after a 4-week learning period. We combined functional PET and metabolic connectivity mapping (MCM) to infer directional interactions across brain regions. Learning altered the top-down regulation of the salience network onto the occipital cortex, with increases in MCM at resting-state and decreases during task execution. Accordingly, a higher divergence between resting-state and task-specific effects was associated with better cognitive performance, indicating that these adaptations are complementary and both required for successful visuo-spatial skill learning. Simulations further showed that changes at resting-state were dependent on glucose metabolism, whereas those during task performance were driven by functional connectivity between salience and visual networks. Referring to previous work, we suggest that learning establishes a metabolically expensive skill engram at rest, whose retrieval serves for efficient task execution by minimizing prediction errors between neuronal representations of brain regions on different hierarchical levels.
Funder
Medizinische Universität Wien
Österreichischen Akademie der Wissenschaften
Austrian Science Fund
Publisher
Springer Science and Business Media LLC
Subject
General Agricultural and Biological Sciences,General Biochemistry, Genetics and Molecular Biology,Medicine (miscellaneous)
Cited by
14 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献