Ultra-deep sequencing reveals dramatic alteration of organellar genomes in Physcomitrella patens due to biased asymmetric recombination

Author:

Odahara MasakiORCID,Nakamura Kensuke,Sekine Yasuhiko,Oshima TakuORCID

Abstract

AbstractDestabilization of organelle genomes causes organelle dysfunction that appears as abnormal growth in plants and diseases in human. In plants, loss of the bacterial-type homologous recombination repair (HRR) factors RECA and RECG induces organelle genome instability. In this study, we show the landscape of organelle genome instability in Physcomitrella patens HRR knockout mutants by deep sequencing in combination with informatics approaches. Genome-wide maps of rearrangement positions in the organelle genomes, which exhibited prominent mutant-specific patterns, were highly biased in terms of direction and location and often associated with dramatic variation in read depth. The rearrangements were location-dependent and mostly derived from the asymmetric products of microhomology-mediated recombination. Our results provide an overall picture of organelle-specific gross genomic rearrangements in the HRR mutants, and suggest that chloroplasts and mitochondria share common mechanisms for replication-related rearrangements.

Funder

Sumitomo Foundation

MEXT | Japan Society for the Promotion of Science

Publisher

Springer Science and Business Media LLC

Subject

General Agricultural and Biological Sciences,General Biochemistry, Genetics and Molecular Biology,Medicine (miscellaneous)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3