Abstract
AbstractOptogenetic tools such as channelrhodopsin-2 (ChR2) enable the manipulation and mapping of neural circuits. However, ChR2 variants selectively transported down a neuron’s long-range axonal projections for precise presynaptic activation remain lacking. As a result, ChR2 activation is often contaminated by the spurious activation of en passant fibers that compromise the accurate interpretation of functional effects. Here, we explored the engineering of a ChR2 variant specifically localized to presynaptic axon terminals. The metabotropic glutamate receptor 2 (mGluR2) C-terminal domain fused with a proteolytic motif and axon-targeting signal (mGluR2-PA tag) localized ChR2-YFP at axon terminals without disturbing normal transmission. mGluR2-PA-tagged ChR2 evoked transmitter release in distal projection areas enabling lower levels of photostimulation. Circuit connectivity mapping in vivo with the Spike Collision Test revealed that mGluR2-PA-tagged ChR2 is useful for identifying axonal projection with significant reduction in the polysynaptic excess noise. These results suggest that the mGluR2-PA tag helps actuate trafficking to the axon terminal, thereby providing abundant possibilities for optogenetic experiments.
Funder
MEXT | Japan Society for the Promotion of Science
Publisher
Springer Science and Business Media LLC
Subject
General Agricultural and Biological Sciences,General Biochemistry, Genetics and Molecular Biology,Medicine (miscellaneous)
Cited by
15 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献