Selection of extended CRISPR RNAs with enhanced targeting and specificity

Author:

Herring-Nicholas Ashley,Dimig Hillary,Roesing Miranda R.,Josephs Eric A.ORCID

Abstract

AbstractAs CRISPR effectors like Cas9 increasingly enter clinical trials for therapeutic gene editing, a future for personalized medicine will require efficient methods to protect individuals from the potential of off-target mutations that may also occur at specific sequences in their genomes that are similar to the therapeutic target. A Cas9 enzyme’s ability to recognize their targets (and off-targets) are determined by the sequence of their RNA-cofactors (their guide RNAs or gRNAs). Here, we present a method to screen hundreds of thousands of gRNA variants with short, randomized 5’ nucleotide extensions near its DNA-targeting segment—a modification that can increase gene editing specificity by orders of magnitude—to identify extended gRNAs (x-gRNAs) that effectively block any activity at those off-target sites while still maintaining strong activity at their intended targets. X-gRNAs that have been selected for specific target / off-target pairs can significantly out-perform other methods that reduce Cas9 off-target activity overall, like using Cas9 variants engineered for higher specificity in general, and we demonstrate their effectiveness in clinically-relevant gRNAs. Our streamlined approach to efficiently identify highly specific and active x-gRNAs provides a way to move beyond a one-size-fits-all model of high-fidelity CRISPR for safer and more effective personalized gene therapies.

Funder

U.S. Department of Health & Human Services | NIH | National Institute of General Medical Sciences

U.S. Department of Health & Human Services | NIH | National Institute of Biomedical Imaging and Bioengineering

Publisher

Springer Science and Business Media LLC

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3