Compartmentalized CRISPR Reactions (CCR) for High‐Throughput Screening of Guide RNA Potency and Specificity

Author:

Supakar Tinku1,Herring‐Nicholas Ashley1,Josephs Eric A.1ORCID

Affiliation:

1. Department of Nanoscience Joint School of Nanoscience and Nanoengineering University of North Carolina at Greensboro Greensboro NC 27401 USA

Abstract

AbstractCRISPR ribonucleoproteins (RNPs) use a variable segment in their guide RNA (gRNA) called a spacer to determine the DNA sequence at which the effector protein will exhibit nuclease activity and generate target‐specific genetic mutations. However, nuclease activity with different gRNAs can vary considerably in a spacer sequence‐dependent manner that can be difficult to predict. While computational tools are helpful in predicting a CRISPR effector's activity and/or potential for off‐target mutagenesis with different gRNAs, individual gRNAs must still be validated in vitro prior to their use. Here, the study presents compartmentalized CRISPR reactions (CCR) for screening large numbers of spacer/target/off‐target combinations simultaneously in vitro for both CRISPR effector activity and specificity by confining the complete CRISPR reaction of gRNA transcription, RNP formation, and CRISPR target cleavage within individual water‐in‐oil microemulsions. With CCR, large numbers of the candidate gRNAs (output by computational design tools) can be immediately validated in parallel, and the study shows that CCR can be used to screen hundreds of thousands of extended gRNA (x‐gRNAs) variants that can completely block cleavage at off‐target sequences while maintaining high levels of on‐target activity. It is expected that CCR can help to streamline the gRNA generation and validation processes for applications in biological and biomedical research.

Funder

National Institute of General Medical Sciences

National Institute of Biomedical Imaging and Bioengineering

DEVCOM Army Research Laboratory

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3