Chromosome-level genome assembly and population genomics of Robinia pseudoacacia reveal the genetic basis for its wide cultivation

Author:

Wang Zefu,Zhang XiaoORCID,Lei Weixiao,Zhu HuiORCID,Wu ShengdanORCID,Liu BingbingORCID,Ru DafuORCID

Abstract

AbstractUrban greening provides important ecosystem services and ideal places for urban recreation and is a serious consideration for municipal decision-makers. Among the tree species cultivated in urban green spaces, Robinia pseudoacacia stands out due to its attractive flowers, fragrances, high trunks, wide adaptability, and essential ecosystem services. However, the genomic basis and consequences of its wide-planting in urban green spaces remains unknown. Here, we report the chromosome-level genome assembly of R. pseudoacacia, revealing a genome size of 682.4 Mb and 33,187 protein-coding genes. More than 99.3% of the assembly is anchored to 11 chromosomes with an N50 of 59.9 Mb. Comparative genomic analyses among 17 species reveal that gene families related to traits favoured by urbanites, such as wood formation, biosynthesis, and drought tolerance, are notably expanded in R. pseudoacacia. Our population genomic analyses further recover 11 genes that are under recent selection. Ultimately, these genes play important roles in the biological processes related to flower development, water retention, and immunization. Altogether, our results reveal the evolutionary forces that shape R. pseudoacacia cultivated for urban greening. These findings also present a valuable foundation for the future development of agronomic traits and molecular breeding strategies for R. pseudoacacia.

Funder

National Natural Science Foundation of China

Publisher

Springer Science and Business Media LLC

Subject

General Agricultural and Biological Sciences,General Biochemistry, Genetics and Molecular Biology,Medicine (miscellaneous)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3