Genomic and Transcriptomic Insights into the Genetic Basis of Foam Secretion in Rice Spittlebug Callitettix versicolor

Author:

Zhang Xiao1ORCID,Chen Hong2,Chen Xu1,Liang Aiping12

Affiliation:

1. Tianjin Key Laboratory of Conservation and Utilization of Animal Diversity, College of Life Sciences, Tianjin Normal University, Tianjin 300387, China

2. Key Laboratory of Zoological Systematics and Evolution, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China

Abstract

Many animal species produce protective foams, the majority of which exhibit evolutionary adaptability. Although the function and composition of foams have been widely studied, the genetic basis of foam secretion remains unknown. Unlike most species that produce foam under specific situations, spittlebugs continuously secrete foams throughout all nymphal stages. Here, we capitalize on the rice spittlebug (Callitettix versicolor) to explore the genetic basis of foam secretion through genomic and transcriptomic approaches. Our comparative genomic analysis for C. versicolor and eight other insect species reveals 606 species-specific gene families and 66 expanded gene families, associated with carbohydrate and lipid metabolism. These functions are in accordance with the composition of foams secreted by spittlebugs. Transcriptomic analyses of malpighian tubules across developmental stages detected 3192 differentially expressed genes. Enrichment analysis of these genes highlights functions also revealed by our comparative genomic analysis and aligns with previous histochemical and morphological observations of foam secretion. This consistency suggests the important roles of these candidate genes in foam production. Our study not only provides novel insights into the genetic basis of foam secretion in rice spittlebugs but also contributes valuable knowledge for future evolutionary studies of spittlebugs and the development of pest control strategies for C. versicolor.

Funder

National Natural Science Foundation of China

Ministry of Ecology and Environment

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3