Normalized unitary synaptic signaling of the hippocampus and entorhinal cortex predicted by deep learning of experimental recordings

Author:

Moradi Keivan,Aldarraji Zainab,Luthra Megha,Madison Grey P.ORCID,Ascoli Giorgio A.ORCID

Abstract

AbstractBiologically realistic computer simulations of neuronal circuits require systematic data-driven modeling of neuron type-specific synaptic activity. However, limited experimental yield, heterogeneous recordings conditions, and ambiguous neuronal identification have so far prevented the consistent characterization of synaptic signals for all connections of any neural system. We introduce a strategy to overcome these challenges and report a comprehensive synaptic quantification among all known neuron types of the hippocampal-entorhinal network. First, we reconstructed >2600 synaptic traces from ∼1200 publications into a unified computational representation of synaptic dynamics. We then trained a deep learning architecture with the resulting parameters, each annotated with detailed metadata such as recording method, solutions, and temperature. The model learned to predict the synaptic properties of all 3,120 circuit connections in arbitrary conditions with accuracy approaching the intrinsic experimental variability. Analysis of data normalized and completed with the deep learning model revealed that synaptic signals are controlled by few latent variables associated with specific molecular markers and interrelating conductance, decay time constant, and short-term plasticity. We freely release the tools and full dataset of unitary synaptic values in 32 covariate settings. Normalized synaptic data can be used in brain simulations, and to predict and test experimental hypothesis.

Funder

U.S. Department of Health & Human Services | NIH | National Institute of Neurological Disorders and Stroke

U.S. Department of Health & Human Services | NIH | National Institute of Mental Health

Publisher

Springer Science and Business Media LLC

Subject

General Agricultural and Biological Sciences,General Biochemistry, Genetics and Molecular Biology,Medicine (miscellaneous)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3