A metabotropic glutamate receptor agonist enhances visual signal fidelity in a mouse model of retinitis pigmentosa

Author:

Li Xiaoyi,Sedlacek Miloslav,Nath Amurta,Szatko Klaudia P.,Grimes William N.,Diamond Jeffrey S.ORCID

Abstract

AbstractMany inherited retinal diseases target photoreceptors, which transduce light into a neural signal that is processed by the downstream visual system. As photoreceptors degenerate, physiological and morphological changes to retinal synapses and circuitry reduce sensitivity and increase noise, degrading visual signal fidelity. Here, we pharmacologically targeted the first synapse in the retina in an effort to reduce circuit noise without sacrificing visual sensitivity. We tested a strategy to partially replace the neurotransmitter lost when photoreceptors die with an agonist of receptors that ON bipolars cells use to detect glutamate released from photoreceptors. Inrd10mice, which express a photoreceptor mutation that causes retinitis pigmentosa (RP), we found that a low dose of the mGluR6 agonist L-2-amino-4-phosphonobutyric acid (L-AP4) reduced pathological noise induced by photoreceptor degeneration. After makingin vivoelectroretinogram recordings inrd10mice to characterize the developmental time course of visual signal degeneration, we examined effects of L-AP4 on sensitivity and circuit noise by recordingin vitrolight-evoked responses from individual retinal ganglion cells (RGCs). L-AP4 decreased circuit noise evident in RGC recordings without significantly reducing response amplitudes, an effect that persisted over the entire time course of rod photoreceptor degeneration. Subsequentin vitrorecordings from rod bipolar cells (RBCs) showed that RBCs are more depolarized inrd10retinas, likely contributing to downstream circuit noise and reduced synaptic gain, both of which appear to be ameliorated by hyperpolarizing RBCs with L-AP4. These beneficial effects may reduce pathological circuit remodeling and preserve the efficacy of therapies designed to restore vision.Significance StatementRetinitis Pigmentosa (RP) is an inherited degenerative disease that affects more than two million people worldwide. RP patients first lose peripheral and low-light vision due to the progressive death of their highly sensitive rod photoreceptors. Photoreceptor degeneration induces pathological noise within the retinal circuit, leading to dramatic structural changes that may hamper therapies to restore visual sensitivity. We discovered a pharmacological treatment that reduces pathological activity in a mouse model of RP without diminishing signaling in surviving circuitry. Partially replacing the neurotransmitter lost when photoreceptors die reduced noise in the retinal circuit without eliminating light sensitivity. This approach could limit the impact of the disease on retinal neurons and preserve the efficacy of subsequent restorative therapies.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3