Abstract
AbstractThe ‘D614G’ mutation (Aspartate-to-Glycine change at position 614) of the SARS-CoV-2 spike protein has been speculated to adversely affect the efficacy of most vaccines and countermeasures that target this glycoprotein, necessitating frequent vaccine matching. Virus neutralisation assays were performed using sera from ferrets which received two doses of the INO-4800 COVID-19 vaccine, and Australian virus isolates (VIC01, SA01 and VIC31) which either possess or lack this mutation but are otherwise comparable. Through this approach, supported by biomolecular modelling of this mutation and the commonly-associated P314L mutation in the RNA-dependent RNA polymerase, we have shown that there is no experimental evidence to support this speculation. We additionally demonstrate that the putative elastase cleavage site introduced by the D614G mutation is unlikely to be accessible to proteases.
Funder
Coalition for Epidemic Preparedness Innovations
Publisher
Springer Science and Business Media LLC
Subject
Pharmacology (medical),Infectious Diseases,Pharmacology,Immunology
Reference25 articles.
1. Wrapp, D. et al. Cryo-EM structure of the 2019-nCoV spike in the prefusion conformation. Science 367, 1260–1263 (2020).
2. Zhang, L. et al. The D614G mutation in the SARS-CoV-2 spike protein reduces S1 shedding and increases infectivity. Preprint at https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7310631/ (2020).
3. Tang, L., Schulkins, A., Chen, C.-N., Dechayes, K. & Kenney, J. S. The SARS-CoV-2 spike protein D614G mutation shows increasing dominance and may confer a structural advantage to the furin cleavage domain. Preprint at https://europepmc.org/article/ppr/ppr166867 (2020).
4. Korber, B. et al. Spike mutation pipeline reveals the emergence of a more transmissible form of SARS-CoV-2. Preprint at https://www.biorxiv.org/content/10.1101/2020.04.29.069054v2 (2020).
5. Daniloski, Z., Guo, X. & Sanjana, N. E. The D614G mutation in SARS-CoV-2 spike increases transduction of multiple human cell types. Preprint at https://www.biorxiv.org/content/10.1101/2020.06.14.151357v2 (2020).
Cited by
55 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献