The SARS-CoV-2 Spike Protein D614G Mutation Shows Increasing Dominance and May Confer a Structural Advantage to the Furin Cleavage Domain

Author:

Tang Leyan,Schulkins Allison,Chen Chun-Nan,Deshayes Kurt,Kenney John S.

Abstract

We analyzed the SARS-CoV-2 spike (S) protein amino acid sequence extracted from 11,542 viral genomic sequences submitted to the Global Initiative on Sharing All Influenza Data (GISAID) database through April 27, 2020. Consistent with prior reports, we found a major S protein mutation, D614 to G614, that was represented in 56% of all the analyzed sequences. All other mutations combined were less than 10%. After parsing the data geographically, we found most of the Chinese patient samples showed D614 (97%). By contrast, most patient samples in many European countries showed G614 (51 to 88%). In the United States, the genotypic distribution in California and Washington was similar to Asian countries, while the distribution in other US states was comparable to Europe. We observed a dramatic increase in the frequency of G614 over time in multiple regions, surpassing D614 when both were present, suggesting G614 S protein virus outcompetes D614 S protein virus. To gain insight into the consequences of the D614G mutation, homology modeling using a multi-template threading mechanism with ab initio structural refinement was performed for a region of the S protein (S591 to N710) spanning the D614G mutation and the S1 furin cleavage site. Molecular models of this region containing D614 or G614 revealed a major difference in secondary structure at the furin domain (RRARS, R682 to S686). The D614 model predicted a random coil structure in the furin domain whereas the G614 model predicted an alpha helix. Critical residues in the cleavage domain of G614 model were found to better align with the PDB structure of a furin inhibitor. Thus, homology modeling studies suggest a potential mechanism whereby the D614G mutation may confer a competitive advantage at the furin binding domain that may contribute to the rise of the D614G SARS-CoV-2 mutant.

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3