Controlling sulfurization of 2D Mo2C crystal for Mo2C/MoS2-based memristor and artificial synapse

Author:

Tang Xin,Yang Leilei,Huang Junhua,Chen Wenjun,Li Baohua,Yang Shaodian,Yang Rongliang,Zeng Zhiping,Tang Zikang,Gui Xuchun

Abstract

AbstractOwing to the conductance-adjustable performance, the emerging two-terminal memristors are promising candidates for artificial synapses and brain-spired neuromorphic computing. Although memristors based on molybdenum disulfide (MoS2) have displayed outstanding performance, such as thermal stability and high energy efficiency, reports on memristors based on MoS2 as the functional layer to simulate synaptic behavior are limited. Herein, a homologous Mo2C/MoS2-based memristor is prepared by partially sulfuring two-dimensional Mo2C crystal. The memristor shows good stability, excellent retention (~104 s) and endurance (>100 cycles), and a high ON/OFF ratio (>103). Moreover, for comprehensively mimicking biological synapses, the essential synaptic functions of the device are systematically analyzed, including paired-pulse facilitation (PPF), short-term plasticity (STP), long-term plasticity (LTP), long-term depression (LTD), and the transitions from STP to LTP. Notably, this artificial synapse could keep a high-level stable memory for a long time (60 s) after repeated stimulation. These results prove that our device is highly desirable for biological synapses, which show great potential for application in future high-density storage and neuromorphic computing systems.

Funder

National Natural Science Foundation of China

Guangdong Basic and Applied Basic Research Foundation

Publisher

Springer Science and Business Media LLC

Subject

Electrical and Electronic Engineering,General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3