Rupture stress of liquid metal nanoparticles and their applications in stretchable conductors and dielectrics

Author:

Liu Yang,Ji XinyiORCID,Liang JiajieORCID

Abstract

AbstractFew works had systematically investigated the relationship between the rupture stress of the oxide shell and the diameter of liquid metal nanoparticles (LMNPs). Here, we fabricated a series of elastomer/LMNPs composites, which were based on various polyurethanes with different shore hardness and LMNPs with different diameters, to systematically study the rupture stress of LMNPs. We established a reliable and guidable relationship between the stress–strain curves of elastomers with different shore hardness and rupture stress of LMNPs with various diameters by both experiments and numerical calculations. Based on this guidance, we can facilely prepare stretchable conductors with remarkable stretchability and conductivity (i.e., 24,130 S · cm−1 at 500% strain) and stretchable dielectrics with excellent stretchability and permittivity (i.e., dielectric constant of 76.8 with 580% strain) through controlling the shore hardness of elastomers and diameter of LMNPs. This work will facilitate the systematic study of LMNPs and expand their use in stretchable electronics.

Publisher

Springer Science and Business Media LLC

Subject

Electrical and Electronic Engineering,General Materials Science

Cited by 44 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3