Flexible and Printable Composite Ink for Thermal Management of Soft Electronics

Author:

Bark Hyunwoo1ORCID,Lee Pooi See1ORCID

Affiliation:

1. School of Materials Science and Engineering Nanyang Technological University 50 Nanyang Avenue Singapore 639798 Singapore

Abstract

AbstractSince heat generation in electronic devices causes thermal failure, heat dissipation is of critical importance. Furthermore, deformable devices are subjected to mechanical stress, therefore, mechanically stable thermal management material should be considered. Herein, a strategy for printable, thermally conductive, and mechanically stable composite ink for thermal management is introduced. Based on the galvanic replacement between eutectic gallium indium (EGaIn) nanoparticles and silver (Ag) flakes, decoration of the EGaIn nanoparticles on Ag flakes is resulted from the difference in standard reduction potential between Ag, Ga, and In. The resultant alloy formation(Ag–Ga or Ag–In) serves as the thermal transport junction between Ag flakes, leading to high thermal and electrical conductivity (≈140 W mK−1 and ≈106 S m−1, respectively). In addition, owing to the polymer binder, the printed ink is mechanically stable on a substrate exhibiting stable thermal conductivity and sheet resistance under the cyclic bending test. Notably, the heat dissipation of the light‐emitting diode (LED) showed better performance when applied with the developed composite ink compared to commercial Ag paste and thermal paste. The junction temperature of the LED is reduced effectively, resulting in a longer lifetime of the LED. The thermal management solution can be utilized in next‐generation soft electronics.

Funder

National Research Foundation Singapore

Publisher

Wiley

Subject

Electrochemistry,Condensed Matter Physics,Biomaterials,Electronic, Optical and Magnetic Materials

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3