Abstract
AbstractAs a stress hormone existing in the human body, cortisol can reflect the psychological stress and health status in daily life, and is a potential biomarker of the body’s stress response. To effectively collect sweat and accurately identify the target, this paper reports a flexible wearable cortisol detection device with outstanding reliability and sensitivity. Molecular imprinted polymer (MIP) ensures cortisol specificity. And carbon nanotubes (CNT) on electrodes increase sensitivity, expanding the detection range to 10−3 to 104 nM, with sensitivity at 189.2 nA/lg(nM). In addition, porous chitosan hydrogel (PCSH) collects sweat effectively, its adhesive properties and 80% swelling rate offer a low-cost alternative to microfluidics. Flexible printed circuit board (FPCB) and serpentine electrode (SE) ensure device durability. This non-invasive, highly sensitive device offers a novel method for mental stress monitoring and clinical diagnosis, advancing human physiological state monitoring.
Funder
Natural Science Foundation of Shandong Province
Publisher
Springer Science and Business Media LLC
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献