Rapid detection of N-lactoyl-phenylalanine for exercise evaluation using dual DNA biosensors based on solution-gated graphene field-effect transistor

Author:

Li Jiacheng1,Zhang Ming1,Zhang Cailing1,Zhang Yin1,Chen Wenbin1,Liu Jian1,Qu Hao1,Wang Lu1

Affiliation:

1. Hefei University of Technology

Abstract

Abstract

As obesity rates continue to rise, there is an increasing focus on reducing obesity through exercise. People are becoming more aware of the importance of weight loss through physical activity. However, the effectiveness of exercise can vary significantly among individuals, making it challenging to evaluate its impact. Therefore, establishing a reliable method for assessing exercise effectiveness is crucial for enhancing exercise quality and reducing obesity risk. In this study, we developed a N-lactoyl-phenylalanine (N-Lac-Phe) biosensor by detecting L-lactic acid (L-Lac) and L-phenylalanine (L-Phe) based on Solution-Gated Graphene Field-Effect Transistors (SGGT). Our findings showed that the L-Lac and L-Phe biosensors exhibited excellent linearity within concentration ranges of 300 pM to 300 nM for L-Lac and 3 nM to 1000 nM for L-Phe, with R² values of 0.99 and 0.98. The detection accuracies for these two types of SGGT biosensors were 91.63 ± 6.97% and 99.39 ± 8.53%, respectively. Using the established N-Lac-Phe, L-Lac, and L-Phe relationship model (NLL model), we calculated the concentration of N-Lac-Phe in the RAW264.7 culture medium based on the concentrations of L-Lac and L-Phe. The biosensors demonstrated excellent accuracy, and selectivity, indicating their potential for rapidly evaluating the effectiveness of exercise.

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3