Abstract
AbstractStable interface adhesion and bending durability of flexible organic solar cells (FOSCs) is a basic requirement for its real application in wearable electronics. Unfortunately, the device performance always degraded during continuous bending. Here, we revealed the weak interface adhesion force between MoO3 hole transporting layer (HTL) and the organic photoactive layer was the main reason of poor bending durability. The insertion of an interface bonding layer with a thermoplastic elastomer, polystyrene-block-poly(ethylene-ran-butylene)-block-polystyrene (SEBS) effectively improved the interface adhesion force of MoO3 HTL and the active layer and decreased the modulus, which ensured higher than 90% of the initial efficiency remaining after 10000 bending. Meanwhile, the FOSCs gave an efficiency of 14.18% and 16.15% for the PM6:Y6 and PM6:L8-BO devices, which was among the highest performance of FOSCs. These results demonstrated the potential of improving the mechanical durability of FOSCs through thermoplastic elastomer interface modification.
Funder
Youth Innovation Promotion Association of the Chinese Academy of Sciences
Publisher
Springer Science and Business Media LLC
Subject
Electrical and Electronic Engineering,General Materials Science
Cited by
15 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献