Abstract
AbstractTo accurately probe the tactile information on soft skin, it is critical for the pressure sensing array to be free of noise and inter-taxel crosstalk, irrespective of the measurement condition. However, on dynamically moving and soft surfaces, which are common conditions for on-skin and robotic applications, obtaining precise measurement without compromising the sensing performance is a significant challenge due to mechanical coupling between the sensors and with the moving surface. In this work, multi-level architectural design of micro-pyramids and trapezoid-shaped mechanical barrier array was implemented to enable accurate spatiotemporal tactile sensing on soft surfaces under dynamic deformations. Trade-off relationship between limit of detection and bending insensitivity was discovered, which was overcome by employing micropores in barrier structures. Finally, in-situ pressure mapping on dynamically moving soft surfaces without signal distortion is demonstrated while human skin and/or soft robots are performing complicated tasks such as reading Braille and handling the artificial organs.
Publisher
Springer Science and Business Media LLC
Subject
Electrical and Electronic Engineering,General Materials Science
Cited by
9 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献