Affiliation:
1. Chongqing Key Laboratory of Generic Technology and System of Service Robots, Chongqing Institute of Green and Intelligent Technology Chinese Academy of Sciences Chongqing 400714 China
2. The MIIT Key Laboratory of Complex‐Field Intelligent Exploration School of Optics and Photonics Beijing Institute of Technology Beijing 100081 China
3. College of Medicine Southwest Jiaotong University Chengdu 610031 China
4. Xiyuan Hospital of China Academy of Chinese Medical Sciences Beijing 100091 China
5. State Key Laboratory of Trauma and Chemical Poisoning Third Military Medical University Chongqing 400042 China
Abstract
AbstractWith the development of modern medicine, the importance of continuous and reliable pulse wave monitoring has increased significantly in physiological evaluation and disease diagnosis. Among them, the 3D reconstruction of the pulse wave is indispensable, and needs rely on ultra‐high resolution sensor arrays, that is, high spatial resolution, temporal resolution, and force resolution. Herein, a flexible high‐density 32 × 32 tactile sensor array based on pressure‐sensitive tunneling mechanism is develpoed. Conformal graphene nanowalls (GNWs) pattern arrays are deposited on micro‐pyramidal structural Si substrate via mask‐assisted plasma enhanced chemical vapor deposition (PECVD) method and are adopted as pressure‐sensitive electrode, exhibiting a spatial resolution of 64 dots/cm2, high sensitivity (222.36 kPa−1) and short response time (2 ms). More importantly, HfO2 tunneling layer can effectively suppress noise current, which made it sense weak pressure signals with 1/1000 force resolution and SNR of 36.32 dB. By leveraging its high‐resolution array, more holistic pulse signals are acquired and the 3D shape of the pulse wave are successfully replicated. This work shows high‐resolution sensors have significant promise for applications in remote intelligent diagnostics.
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献