Abstract
AbstractShort-wavelength infrared (SWIR) sensors have attracted keen attention due to the increasing necessity in a variety of scientific and industrial applications, including biomedical and information technology fields. Because conventional SWIR sensors are made of inorganic materials with rigid and brittle characteristics, organic materials with a discrete SWIR absorption are required for flexible SWIR sensors in the flexible electronics era. Here, we demonstrate that a polytriarylamine, poly[N,N′-bis(4-butylphenyl)-N,N′-bis(phenyl)benzidine] (PolyTPD), can absorb almost full range of SWIR wavelength (λ = 1000–3200 nm) after 48 h doping with tris(pentafluorophenyl)borane (BCF). The spectroscopic characterization disclosed that an electron transfer from PolyTPD to BCF created a new low energy level (gap) state leading to the SWIR absorption in the BCF-doped PolyTPD complexes. Organic phototransistors (OPTRs) with the BCF-doped PolyTPD films as a gate-sensing layer could detect the SWIR light with a reasonable photoresponsivity of ~538 mA W−1 (λ = 1500 nm), ~541 mA W−1 (λ = 2000 nm), and ~222 mA W−1 (λ = 3000 nm). The present breakthrough SWIR-OPTR technology can pave a way for further advances in SWIR-absorbing organic materials and flexible SWIR sensors.
Funder
National Research Foundation of Korea
Publisher
Springer Science and Business Media LLC
Subject
Electrical and Electronic Engineering,General Materials Science
Cited by
27 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献