Analysis of exome sequence in 604 trios for recessive genotypes in schizophrenia

Author:

Rees E,Kirov G,Walters J T,Richards A L,Howrigan D,Kavanagh D H,Pocklington A J,Fromer M,Ruderfer D M,Georgieva L,Carrera N,Gormley P,Palta PORCID,Williams H,Dwyer S,Johnson J S,Roussos P,Barker D D,Banks E,Milanova V,Rose S A,Chambert K,Mahajan M,Scolnick E M,Moran J L,Tsuang M T,Glatt S J,Chen W J,Hwu H -G,Faraone Stephen V,Roe Cheri A,Chandler Sharon D,Liu Chih-Min,Liu Chen-Chung,Yeh Ling-Ling,Ouyang Wen-Chen,Chan Hung-Yu,Chen Chun-Ying,Neale B M,Palotie A,Sklar P,Purcell S M,McCarroll S A,Holmans P,Owen M J,O'Donovan M C,

Abstract

AbstractGenetic associations involving both rare and common alleles have been reported for schizophrenia but there have been no systematic scans for rare recessive genotypes using fully phased trio data. Here, we use exome sequencing in 604 schizophrenia proband–parent trios to investigate the role of recessive (homozygous or compound heterozygous) nonsynonymous genotypes in the disorder. The burden of recessive genotypes was not significantly increased in probands at either a genome-wide level or in any individual gene after adjustment for multiple testing. At a system level, probands had an excess of nonsynonymous compound heterozygous genotypes (minor allele frequency, MAF ⩽1%) in voltage-gated sodium channels (VGSCs; eight in probands and none in parents, P=1.5 × 104). Previous findings of multiple de novo loss-of-function mutations in this gene family, particularly SCN2A, in autism and intellectual disability provide biological and genetic plausibility for this finding. Pointing further to the involvement of VGSCs in schizophrenia, we found that these genes were enriched for nonsynonymous mutations (MAF ⩽0.1%) in cases genotyped using an exome array, (5585 schizophrenia cases and 8103 controls), and that in the trios data, synaptic proteins interacting with VGSCs were also enriched for both compound heterozygosity (P=0.018) and de novo mutations (P=0.04). However, we were unable to replicate the specific association with compound heterozygosity at VGSCs in an independent sample of Taiwanese schizophrenia trios (N=614). We conclude that recessive genotypes do not appear to make a substantial contribution to schizophrenia at a genome-wide level. Although multiple lines of evidence, including several from this study, suggest that rare mutations in VGSCs contribute to the disorder, in the absence of replication of the original findings regarding compound heterozygosity, this conclusion requires evaluation in a larger sample of trios.

Publisher

Springer Science and Business Media LLC

Subject

Biological Psychiatry,Cellular and Molecular Neuroscience,Psychiatry and Mental health

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3