Mutation screening of SPTLC1 and SPTLC2 in amyotrophic lateral sclerosis

Author:

Li Chunyu,Hou Yanbing,Wei Qianqian,Lin Junyu,Jiang Zheng,Jiang Qirui,Yang Tianmi,Xiao Yi,Huang Jingxuan,Cheng Yangfan,Ou Ruwei,Liu Kuncheng,Chen Xueping,Song Wei,Zhao Bi,Wu Ying,Cao Bei,Chen Yongping,Shang Huifang

Abstract

Abstract Background Recently, several rare variants of SPTLC1 were identified as disease cause for juvenile amyotrophic lateral sclerosis (ALS) by disrupting the normal homeostatic regulation of serine palmitoyltransferase (SPT). However, further exploration of the rare variants in large cohorts was still necessary. Meanwhile, SPTLC2 plays a similar role as SPTLC1 in the SPT function. Methods To explore the genetic role of SPTLC1 and SPTLC2 in ALS, we analyzed the rare protein-coding variants in 2011 patients with ALS and 3298 controls from the Chinese population with whole exome sequencing. Fisher’s exact test was performed between each variant and disease risk, while at gene level over-representation of rare variants in patients was examined with optimized sequence kernel association test (SKAT-O). Results Totally 33 rare variants with minor allele frequency < 0.01 were identified, including 17 in SPTLC1 and 16 in SPTLC2. One adult-onset patient carried the variant p.E406K (SPTLC1) which was reported in previous study. Additionally, three adult-onset patients carried variants in the same amino acids as the variants identified in previous studies (p.Y509C, p.S331T, and p.R239Q in SPTLC1). At gene level, rare variants of SPTLC1 and STPLC2 were not enriched in patients. Conclusion These results broadened the variant spectrum of SPTLC1 and SPTLC2 in ALS, and paved the way for future research. Further replication was still needed to explore the genetic role of SPTLC1 in ALS.

Funder

Sichuan Science and Technology Program

National Key Research and Development Program of China

Publisher

Springer Science and Business Media LLC

Subject

Drug Discovery,Genetics,Molecular Biology,Molecular Medicine

Cited by 9 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3