Surface tension of nanoparticle dispersions unravelled by size-dependent non-occupied sites free energy versus adsorption kinetics

Author:

Machrafi HatimORCID

Abstract

AbstractThe surface tension of dispersions presents many types of behaviours. Although some models, based on classical surface thermodynamics, allow partial interpretation, fundamental understanding is still lacking. This work develops a single analytical physics-based formulation experimentally validated for the surface tension of various pure nanoparticle dispersions, explaining the underlying mechanisms. Against common belief, surface tension increase of dispersions appears not to occur at low but rather at intermediate surface coverage, owed by the relatively large size of nanoparticles with respect to the fluid molecules. Surprisingly, the closed-form model shows that the main responsible mechanism for the various surface tension behaviours is not the surface chemical potential of adsorbed nanoparticles, but rather that of non-occupied sites, triggered and delicately controlled by the nanoparticles ‘at a distance’, introducing the concept of the ‘non-occupancy’ effect. The model finally invites reconsidering surface thermodynamics of dispersions and provides for criteria that allow in a succinct manner to quantitatively classify the various surface tension behaviours.

Funder

European Space Agency

Federaal Wetenschapsbeleid

Publisher

Springer Science and Business Media LLC

Subject

Space and Planetary Science,Physics and Astronomy (miscellaneous),Agricultural and Biological Sciences (miscellaneous),Biochemistry, Genetics and Molecular Biology (miscellaneous),Materials Science (miscellaneous),Medicine (miscellaneous)

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3