Variants of application of the least squares method in Szyszkowski and Rosin–Rammler approximations

Author:

Galkin Vladislav M.,Volkov Yuriy S.,Chekantseva Liliya V.,Ivanov Vladimir A.

Abstract

Relevance. Caused by the need to develop and optimize the mathematical apparatus for processing the results of laboratory experiments and increasing the adequacy of the results obtained. Aim. To create alternative methods for finding the parameters of the Szyszkowski and Rosin–Rammler dependencies, which are subject to surfactant adsorption from an aqueous solution on solid adsorbents and deposition of suspended particles in sedimentation analysis. Methods. The main method for determining the parameters of two-parameter dependencies is the least squares method. The standard approach is based on finding the minimum of a function of two variables by computational methods of nonlinear programming. The equations, obtained by equating the derivatives of the objective function for each of the parameters to zero, are used as necessary conditions for the minimum of the objective function. The paper considers alternative approaches to obtaining explicit formulas and reduction to the solution of the transcendental equation. Results. For the two-parameter dependencies of Szyszkowski and Rosin–Rammler, the alternative approaches for determining unknown parameters are proposed. In the standard approach, solving the problem is based on numerical minimization of a function of two variables by nonlinear programming methods. The authors propose the approach, in which the Szyszkowski and Rosin–Rammler equations are subjected to some equivalent transformations so that the use of the necessary minimum conditions makes it possible to obtain a linear equation with respect to at least one of the required parameters. This leads to simplification of calculations, it is required to solve one transcendental equation numerically, the second parameter is then determined by an explicit formula. And for the Rosin–Rammler dependence, in one of the proposed variants, it was possible to obtain explicit formulas for finding both parameters.

Publisher

National Research Tomsk Polytechnic University

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3