Abstract
AbstractWhen confined within containers or conduits, drops and bubbles migrate to regions of minimum energy by the combined effects of surface tension, surface wetting, system geometry, and initial conditions. Such capillary phenomena are exploited for passive phase separation operations in micro-fluidic devices on earth and macro-fluidic devices aboard spacecraft. Our study focuses on the migration and ejection of large inertial-capillary drops confined between tilted planar hydrophobic substrates (a.k.a., wedges). In our experiments, the brief nearly weightless environment of a 2.1 s drop tower allows for the study of such capillary dominated behavior for up to 10 mL water drops with migration velocities up to 12 cm/s. We control ejection velocities as a function of drop volume, substrate tilt angle, initial confinement, and fluid properties. We then demonstrate how such geometries may be employed as passive no-moving-parts droplet generators for very large drop dynamics investigations. The method is ideal for hand-held non-oscillatory ‘droplet’ generation in low-gravity environments.
Funder
NASA | Glenn Research Center
NASA | Johnson Space Center
Publisher
Springer Science and Business Media LLC
Subject
Space and Planetary Science,Physics and Astronomy (miscellaneous),Agricultural and Biological Sciences (miscellaneous),Biochemistry, Genetics and Molecular Biology (miscellaneous),Materials Science (miscellaneous),Medicine (miscellaneous)
Cited by
12 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献