Nanoporous graphene-based thin-film microelectrodes for in vivo high-resolution neural recording and stimulation
-
Published:2024-01-11
Issue:4
Volume:19
Page:514-523
-
ISSN:1748-3387
-
Container-title:Nature Nanotechnology
-
language:en
-
Short-container-title:Nat. Nanotechnol.
Author:
Viana Damià, Walston Steven T.ORCID, Masvidal-Codina EduardORCID, Illa XaviORCID, Rodríguez-Meana BrunoORCID, del Valle Jaume, Hayward Andrew, Dodd Abbie, Loret Thomas, Prats-Alfonso ElisabetORCID, de la Oliva Natàlia, Palma Marie, del Corro ElenaORCID, del Pilar Bernicola María, Rodríguez-Lucas Elisa, Gener ThomasORCID, de la Cruz Jose Manuel, Torres-Miranda Miguel, Duvan Fikret TaygunORCID, Ria NicolaORCID, Sperling Justin, Martí-Sánchez Sara, Spadaro Maria Chiara, Hébert Clément, Savage SineadORCID, Arbiol JordiORCID, Guimerà-Brunet AntonORCID, Puig M. VictoriaORCID, Yvert BlaiseORCID, Navarro Xavier, Kostarelos KostasORCID, Garrido Jose A.ORCID
Abstract
AbstractOne of the critical factors determining the performance of neural interfaces is the electrode material used to establish electrical communication with the neural tissue, which needs to meet strict electrical, electrochemical, mechanical, biological and microfabrication compatibility requirements. This work presents a nanoporous graphene-based thin-film technology and its engineering to form flexible neural interfaces. The developed technology allows the fabrication of small microelectrodes (25 µm diameter) while achieving low impedance (∼25 kΩ) and high charge injection (3–5 mC cm−2). In vivo brain recording performance assessed in rodents reveals high-fidelity recordings (signal-to-noise ratio >10 dB for local field potentials), while stimulation performance assessed with an intrafascicular implant demonstrates low current thresholds (<100 µA) and high selectivity (>0.8) for activating subsets of axons within the rat sciatic nerve innervating tibialis anterior and plantar interosseous muscles. Furthermore, the tissue biocompatibility of the devices was validated by chronic epicortical (12 week) and intraneural (8 week) implantation. This work describes a graphene-based thin-film microelectrode technology and demonstrates its potential for high-precision and high-resolution neural interfacing.
Funder
EC | Horizon 2020 Framework Programme
Publisher
Springer Science and Business Media LLC
Reference63 articles.
1. Hariz, M. Twenty-five years of deep brain stimulation: celebrations and apprehensions. Mov. Disord. 27, 930–933 (2012). 2. Macherey, O. & Carlyon, R. P. Cochlear implants. Curr. Biol. 24, R878–R884 (2014). 3. Raspopovic, S. et al. Restoring natural sensory feedback in real-time bidirectional hand prostheses. Sci. Transl. Med. 6, 222ra19–222ra19 (2014). 4. Dhillon, G. S. & Horch, K. W. Neuroprosthetics: Theory And Practice (World Scientific, 2004). 5. Chae, M. S., Yang, Z. & Liu, W. Microelectronics of recording, stimulation, and wireless telemetry for neuroprosthetics: design and optimization. in Implantable Neural Prostheses 2: Techniques and Engineering Approaches (eds Zhou, D. & Greenbaum, E.) 253–330 (Springer, 2010).
Cited by
16 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
|
|