Deep-learning system to improve the quality and efficiency of volumetric heart segmentation for breast cancer

Author:

Zeleznik RomanORCID,Weiss Jakob,Taron Jana,Guthier Christian,Bitterman Danielle S.,Hancox Cindy,Kann Benjamin H.ORCID,Kim Daniel W.ORCID,Punglia Rinaa S.,Bredfeldt Jeremy,Foldyna Borek,Eslami Parastou,Lu Michael T.ORCID,Hoffmann Udo,Mak RaymondORCID,Aerts Hugo J. W. L.ORCID

Abstract

AbstractAlthough artificial intelligence algorithms are often developed and applied for narrow tasks, their implementation in other medical settings could help to improve patient care. Here we assess whether a deep-learning system for volumetric heart segmentation on computed tomography (CT) scans developed in cardiovascular radiology can optimize treatment planning in radiation oncology. The system was trained using multi-center data (n = 858) with manual heart segmentations provided by cardiovascular radiologists. Validation of the system was performed in an independent real-world dataset of 5677 breast cancer patients treated with radiation therapy at the Dana-Farber/Brigham and Women’s Cancer Center between 2008–2018. In a subset of 20 patients, the performance of the system was compared to eight radiation oncology experts by assessing segmentation time, agreement between experts, and accuracy with and without deep-learning assistance. To compare the performance to segmentations used in the clinic, concordance and failures (defined as Dice < 0.85) of the system were evaluated in the entire dataset. The system was successfully applied without retraining. With deep-learning assistance, segmentation time significantly decreased (4.0 min [IQR 3.1–5.0] vs. 2.0 min [IQR 1.3–3.5]; p < 0.001), and agreement increased (Dice 0.95 [IQR = 0.02]; vs. 0.97 [IQR = 0.02], p < 0.001). Expert accuracy was similar with and without deep-learning assistance (Dice 0.92 [IQR = 0.02] vs. 0.92 [IQR = 0.02]; p = 0.48), and not significantly different from deep-learning-only segmentations (Dice 0.92 [IQR = 0.02]; p ≥ 0.1). In comparison to real-world data, the system showed high concordance (Dice 0.89 [IQR = 0.06]) across 5677 patients and a significantly lower failure rate (p < 0.001). These results suggest that deep-learning algorithms can successfully be applied across medical specialties and improve clinical care beyond the original field of interest.

Funder

Deutsche Forschungsgemeinschaft

American Heart Association

U.S. Department of Health & Human Services | National Institutes of Health

Publisher

Springer Science and Business Media LLC

Subject

Health Information Management,Health Informatics,Computer Science Applications,Medicine (miscellaneous)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3