Discovery of signatures of fatal neonatal illness in vital signs using highly comparative time-series analysis

Author:

Niestroy Justin C.,Moorman J. RandallORCID,Levinson Maxwell A.,Manir Sadnan Al,Clark Timothy W.,Fairchild Karen D.,Lake Douglas E.

Abstract

AbstractTo seek new signatures of illness in heart rate and oxygen saturation vital signs from Neonatal Intensive Care Unit (NICU) patients, we implemented highly comparative time-series analysis to discover features of all-cause mortality in the next 7 days. We collected 0.5 Hz heart rate and oxygen saturation vital signs of infants in the University of Virginia NICU from 2009 to 2019. We applied 4998 algorithmic operations from 11 mathematical families to random daily 10 min segments from 5957 NICU infants, 205 of whom died. We clustered the results and selected a representative from each, and examined multivariable logistic regression models. 3555 operations were usable; 20 cluster medoids held more than 81% of the information, and a multivariable model had AUC 0.83. New algorithms outperformed others: moving threshold, successive increases, surprise, and random walk. We computed provenance of the computations and constructed a software library with links to the data. We conclude that highly comparative time-series analysis revealed new vital sign measures to identify NICU patients at the highest risk of death in the next week.

Funder

U.S. Department of Health & Human Services | NIH | National Heart, Lung, and Blood Institute

Wallace H. Coulter Foundation

Publisher

Springer Science and Business Media LLC

Subject

Health Information Management,Health Informatics,Computer Science Applications,Medicine (miscellaneous)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3