Prospective validation of dermoscopy-based open-source artificial intelligence for melanoma diagnosis (PROVE-AI study)

Author:

Marchetti Michael A.,Cowen Emily A.ORCID,Kurtansky Nicholas R.ORCID,Weber JochenORCID,Dauscher Megan,DeFazio Jennifer,Deng Liang,Dusza Stephen W.,Haliasos Helen,Halpern Allan C.,Hosein Sharif,Nazir Zaeem H.ORCID,Marghoob Ashfaq A.ORCID,Quigley Elizabeth A.,Salvador Trina,Rotemberg Veronica M.ORCID

Abstract

AbstractThe use of artificial intelligence (AI) has the potential to improve the assessment of lesions suspicious of melanoma, but few clinical studies have been conducted. We validated the accuracy of an open-source, non-commercial AI algorithm for melanoma diagnosis and assessed its potential impact on dermatologist decision-making. We conducted a prospective, observational clinical study to assess the diagnostic accuracy of the AI algorithm (ADAE) in predicting melanoma from dermoscopy skin lesion images. The primary aim was to assess the reliability of ADAE’s sensitivity at a predefined threshold of 95%. Patients who had consented for a skin biopsy to exclude melanoma were eligible. Dermatologists also estimated the probability of melanoma and indicated management choices before and after real-time exposure to ADAE scores. All lesions underwent biopsy. Four hundred thirty-five participants were enrolled and contributed 603 lesions (95 melanomas). Participants had a mean age of 59 years, 54% were female, and 96% were White individuals. At the predetermined 95% sensitivity threshold, ADAE had a sensitivity of 96.8% (95% CI: 91.1–98.9%) and specificity of 37.4% (95% CI: 33.3–41.7%). The dermatologists’ ability to assess melanoma risk significantly improved after ADAE exposure (AUC 0.7798 vs. 0.8161, p = 0.042). Post-ADAE dermatologist decisions also had equivalent or higher net benefit compared to biopsying all lesions. We validated the accuracy of an open-source melanoma AI algorithm and showed its theoretical potential for improving dermatology experts’ ability to evaluate lesions suspicious of melanoma. Larger randomized trials are needed to fully evaluate the potential of adopting this AI algorithm into clinical workflows.

Funder

U.S. Department of Health & Human Services | NIH | National Cancer Institute

Harry J. Lloyd Charitable Trust

U.S. Department of Health & Human Services | NIH | National Center for Advancing Translational Sciences

Publisher

Springer Science and Business Media LLC

Subject

Health Information Management,Health Informatics,Computer Science Applications,Medicine (miscellaneous)

Cited by 22 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3