The SLICE-3D dataset: 400,000 skin lesion image crops extracted from 3D TBP for skin cancer detection

Author:

Kurtansky Nicholas R.ORCID,D’Alessandro Brian M.,Gillis Maura C.,Betz-Stablein BrigidORCID,Cerminara Sara E.,Garcia Rafael,Girundi Marcela Alves,Goessinger Elisabeth Victoria,Gottfrois Philippe,Guitera Pascale,Halpern Allan C.,Jakrot Valerie,Kittler HaraldORCID,Kose KivancORCID,Liopyris Konstantinos,Malvehy JosepORCID,Mar Victoria J.,Martin Linda K.,Mathew ThomasORCID,Maul Lara Valeska,Mothershaw AdamORCID,Mueller Alina M.,Mueller Christoph,Navarini Alexander A.,Rajeswaran Tarlia,Rajeswaran Vin,Saha AnupORCID,Sashindranath MaithiliORCID,Serra-García Laura,Soyer H. PeterORCID,Theocharis Georgios,Vos Ayesha,Weber Jochen,Rotemberg VeronicaORCID

Abstract

AbstractAI image classification algorithms have shown promising results when applied to skin cancer detection. Most public skin cancer image datasets are comprised of dermoscopic photos and are limited by selection bias, lack of standardization, and lend themselves to development of algorithms that can only be used by skilled clinicians. The SLICE-3D (“Skin Lesion Image Crops Extracted from 3D TBP”) dataset described here addresses those concerns and contains images of over 400,000 distinct skin lesions from seven dermatologic centers from around the world. De-identified images were systematically extracted from sensitive 3D Total Body Photographs and are comparable in optical resolution to smartphone images. Algorithms trained on lower quality images could improve clinical workflows and detect skin cancers earlier if deployed in primary care or non-clinical settings, where photos are captured by non-expert physicians or patients. Such a tool could prompt individuals to visit a specialized dermatologist. This dataset circumvents many inherent limitations of prior datasets and may be used to build upon previous applications of skin imaging for cancer detection.

Funder

U.S. Department of Health & Human Services | NIH | National Cancer Institute

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3