Development and validation of machine learning algorithms based on electrocardiograms for cardiovascular diagnoses at the population level

Author:

Kalmady Sunil Vasu,Salimi AmirORCID,Sun Weijie,Sepehrvand Nariman,Nademi Yousef,Bainey Kevin,Ezekowitz JustinORCID,Hindle Abram,McAlister FinlayORCID,Greiner RusselORCID,Sandhu Roopinder,Kaul PadmaORCID

Abstract

AbstractArtificial intelligence-enabled electrocardiogram (ECG) algorithms are gaining prominence for the early detection of cardiovascular (CV) conditions, including those not traditionally associated with conventional ECG measures or expert interpretation. This study develops and validates such models for simultaneous prediction of 15 different common CV diagnoses at the population level. We conducted a retrospective study that included 1,605,268 ECGs of 244,077 adult patients presenting to 84 emergency departments or hospitals, who underwent at least one 12-lead ECG from February 2007 to April 2020 in Alberta, Canada, and considered 15 CV diagnoses, as identified by International Classification of Diseases, 10th revision (ICD-10) codes: atrial fibrillation (AF), supraventricular tachycardia (SVT), ventricular tachycardia (VT), cardiac arrest (CA), atrioventricular block (AVB), unstable angina (UA), ST-elevation myocardial infarction (STEMI), non-STEMI (NSTEMI), pulmonary embolism (PE), hypertrophic cardiomyopathy (HCM), aortic stenosis (AS), mitral valve prolapse (MVP), mitral valve stenosis (MS), pulmonary hypertension (PHTN), and heart failure (HF). We employed ResNet-based deep learning (DL) using ECG tracings and extreme gradient boosting (XGB) using ECG measurements. When evaluated on the first ECGs per episode of 97,631 holdout patients, the DL models had an area under the receiver operating characteristic curve (AUROC) of <80% for 3 CV conditions (PTE, SVT, UA), 80–90% for 8 CV conditions (CA, NSTEMI, VT, MVP, PHTN, AS, AF, HF) and an AUROC > 90% for 4 diagnoses (AVB, HCM, MS, STEMI). DL models outperformed XGB models with about 5% higher AUROC on average. Overall, ECG-based prediction models demonstrated good-to-excellent prediction performance in diagnosing common CV conditions.

Publisher

Springer Science and Business Media LLC

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3