Integrating Internet multisource big data to predict the occurrence and development of COVID-19 cryptic transmission

Author:

Gao ChengchengORCID,Zhang Rui,Chen Xicheng,Yao Tianhua,Song Qiuyue,Ye Wei,Li PengPeng,Wang Zhenyan,Yi Dong,Wu YazhouORCID

Abstract

AbstractWith the recent prevalence of COVID-19, cryptic transmission is worthy of attention and research. Early perception of the occurrence and development risk of cryptic transmission is an important part of controlling the spread of COVID-19. Previous relevant studies have limited data sources, and no effective analysis has been carried out on the occurrence and development of cryptic transmission. Hence, we collect Internet multisource big data (including retrieval, migration, and media data) and propose comprehensive and relative application strategies to eliminate the impact of national and media data. We use statistical classification and regression to construct an early warning model for occurrence and development. Under the guidance of the improved coronavirus herd immunity optimizer (ICHIO), we construct a “sampling-feature-hyperparameter-weight” synchronous optimization strategy. In occurrence warning, we propose an undersampling synchronous evolutionary ensemble (USEE); in development warning, we propose a bootstrap-sampling synchronous evolutionary ensemble (BSEE). Regarding the internal training data (Heilongjiang Province), the ROC-AUC of USEE3 incorporating multisource data is 0.9553, the PR-AUC is 0.8327, and the R2 of BSEE2 fused by the “nonlinear + linear” method is 0.8698. Regarding the external validation data (Shaanxi Province), the ROC-AUC and PR-AUC values of USEE3 were 0.9680 and 0.9548, respectively, and the R2 of BSEE2 was 0.8255. Our method has good accuracy and generalization and can be flexibly used in the prediction of cryptic transmission in various regions. We propose strategy research that integrates multiple early warning tasks based on multisource Internet big data and combines multiple ensemble models. It is an extension of the research in the field of traditional infectious disease monitoring and has important practical significance and innovative theoretical value.

Funder

National Natural Science Foundation of China

Natural Science Foundation of Chongqing

Publisher

Springer Science and Business Media LLC

Subject

Health Information Management,Health Informatics,Computer Science Applications,Medicine (miscellaneous)

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3