Abstract
AbstractMachine learning has the potential to change the practice of medicine, particularly in areas that require pattern recognition (e.g. radiology). Although automated classification is unlikely to be perfect, few modern machine learning tools have the ability to assess their own classification confidence to recognize uncertainty that might need human review. Using automated single-channel sleep staging as a first implementation, we demonstrated that uncertainty information (as quantified using Shannon entropy) can be utilized in a “human in the loop” methodology to promote targeted review of uncertain sleep stage classifications on an epoch-by-epoch basis. Across 20 sleep studies, this feedback methodology proved capable of improving scoring agreement with the gold standard over automated scoring alone (average improvement in Cohen’s Kappa of 0.28), in a fraction of the scoring time compared to full manual review (60% reduction). In summary, our uncertainty-based clinician-in-the-loop framework promotes the improvement of medical classification accuracy/confidence in a cost-effective and economically resourceful manner.
Funder
U.S. Department of Health & Human Services | NIH | National Heart, Lung, and Blood Institute
Publisher
Springer Science and Business Media LLC
Subject
Health Information Management,Health Informatics,Computer Science Applications,Medicine (miscellaneous)
Cited by
8 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献