Meta-learning to calibrate Gaussian processes with deep kernels for regression uncertainty estimation
-
Published:2024-04
Issue:
Volume:579
Page:127441
-
ISSN:0925-2312
-
Container-title:Neurocomputing
-
language:en
-
Short-container-title:Neurocomputing
Author:
Iwata TomoharuORCID,
Kumagai Atsutoshi
Reference76 articles.
1. Statistical uncertainty quantification to augment clinical decision support: a first implementation in sleep medicine;Kang;NPJ Digit. Med.,2021
2. The need for uncertainty quantification in machine-assisted medical decision making;Begoli;Nat. Mach. Intell.,2019
3. R. Michelmore, M. Wicker, L. Laurenti, L. Cardelli, Y. Gal, M. Kwiatkowska, Uncertainty Quantification with Statistical Guarantees in End-to-End Autonomous Driving Control, in: IEEE International Conference on Robotics and Automation, 2020, pp. 7344–7350.
4. Taking the human out of the loop: A review of Bayesian optimization;Shahriari;Proc. IEEE,2015
5. MOPO: Model-based offline policy optimization;Yu;Adv. Neural Inf. Process. Syst.,2020