Abstract
AbstractMortality remains an exceptional burden of extremely preterm birth. Current clinical mortality prediction scores are calculated using a few static variable measurements, such as gestational age, birth weight, temperature, and blood pressure at admission. While these models do provide some insight, numerical and time-series vital sign data are also available for preterm babies admitted to the NICU and may provide greater insight into outcomes. Computational models that predict the mortality risk of preterm birth in the NICU by integrating vital sign data and static clinical variables in real time may be clinically helpful and potentially superior to static prediction models. However, there is a lack of established computational models for this specific task. In this study, we developed a novel deep learning model, DeepPBSMonitor (Deep Preterm Birth Survival Risk Monitor), to predict the mortality risk of preterm infants during initial NICU hospitalization. The proposed deep learning model can effectively integrate time-series vital sign data and fixed variables while resolving the influence of noise and imbalanced data. The proposed model was evaluated and compared with other approaches using data from 285 infants. Results showed that the DeepPBSMonitor model outperforms other approaches, with an accuracy, recall, and AUC score of 0.888, 0.780, and 0.897, respectively. In conclusion, the proposed model has demonstrated efficacy in predicting the real-time mortality risk of preterm infants in initial NICU hospitalization.
Publisher
Springer Science and Business Media LLC
Subject
Health Information Management,Health Informatics,Computer Science Applications,Medicine (miscellaneous)
Cited by
17 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献